
112 

Hydrogen exchange and protein folding 
Jane Clarke* and Laura S Itzhakit 

Amide hydrogen-deuterium exchange is a sensitive probe 
of the structure, stability and dynamics of proteins. The 
significant increase in the number of small, model proteins 
that have been studied has allowed a better understanding of 
the structural fluctuations that lead to hydrogen exchange. 
Recent technical advances enable the methodology to be 
applied to the study of protein-protein interactions in much 
larger, more complex systems. 
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Abbreviations 
BPTI bovine pancreatic trypsin inhibitor 
CI2 chymotrypsin inhibitor 2 
DHFR dihydrofolate reductase 
GdmCI guanidinium chloride 
HX hydrogen exchange 
OMTKY3 ovomucoid third domain 

I n t r o d u c t i o n  
Hydrogen exchange (HX) is a powerful technique that has 
been used for many years to study the structure, stability, 
folding, dynamics and binding of proteins. The  pioneering 
work on HX focused on a small number of proteins. In 
the past few years, this has been extended to include 
a significant number of small, model proteins, many of 
which lack the disulphide cross-links or prosthetic groups 
that can complicate the analysis. T he  combination of HX 
and other folding studies of these systems has improved 
our understanding of the conformational dynamics of 
proteins at equilibrium. In this reviex~; we concentrate on 
HX at equilibrium. We do not have room to discuss kinetic 
studies of protein folding, nor HX in denatured states. 

Theory of the hydrogen exchange mechanism 
Hydrogen exchange mechanism 
The  commonly accepted model is the two-step model of 
Linders t r~m-Lang [1], refined by Hvidt and Nielsen [2], 
and described as follows 

C H ~k°P~ O H --~kintoD. "- C D 

kcI D20 
(1) 

H and D denote protonated and deuterated forms. C 
denotes the 'closed', exchange incompetent  form, and O 

the 'open' ,  exchange competent  form. Kop is the rate 
constant for the opening step, kcl is the rate constant for 
the closing or reproduction step. kin t is the rate constant 
for the chemical exchange reaction, which will depend 
on the protein primaw sequence, pH and temperature. 
Under folding conditions, kcl>>Kop, so that the observed 
rate constant for exchange, kex , can be defined as 

kex kop'kint  (2) 
kcl + kint 

The two-process model 
In the generally accepted two-process model, originally 
proposed by Woodward and co-workers [3,4], protected 
amide protons can exchange through relatively rare global 
unfolding events, or through fluctuations of the native 
state. The  nature of the native state fluctuations are still 
unresolved, but most investigators assume the two-step, 
Linderstr~m-Lang model when analysing both global and 
native-state exchange kinetics. 

EX1 and EX2 kinetics 
From equation 2, there are two limiting conditions for 
exchange. If  the open species equilibrates rapidly with C, 
so that the closing step, kcl, is faster than the exchange 
step kint, the the chemical exchange is the rate-limiting 
step, and kex reduces to 

kex = Kop'kint (3) 

where Kop is the equilibrium constant for the opening 
reaction. This is known as the EX2 limit. The  apparent 
free energy of exchange, At':app ,~uex , can be calculated 
assuming kint, which depends on pH, temperature and 
position in the protein, can be accurately inferred from 
peptide studies [5,6]. 

AGaPx p = - R T l n K , , p  (4) 

where R is the gas constant and T is the temperature in 
Kelvin. Exchange under EX2 conditions, therefore, can 
be used to determine the apparent free energy of the 
underlying structural opening reaction. 

In the other limiting case, EX1, the chemical exchange 
step is much faster than the rate constant for reprotection 
and so the opening step becomes rate-limiting: 

kex = kop (5) 

EX1 and EX2 exchange mechanisms can be distinguished 
from the pH dependence of exchange, from the decay of 
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nuclear Overhauser enhancement  signals, or using mass 
spectrometw (see, for example, [7-9]). 

EX1 and EX2 kinetics in detail 
According to the Linderstr0m-Lang model [1,2] the 
exchange mechanism will depend on the relative rates 
of closing and exchange, kcl and "~'int- Early studies 
demonstrated that under native conditions exchange is 
usually in the EX2 limit [10], whereas EX1 kinetics were 
only observed under unfolding conditions or at extremes 
of temperature or pH [11]. It is now easier to distinguish 
the mechanism unequivocally, and it has become clear 
that EX2 kinetics are not universal, even under relatively 
benign conditions [7,12]. Small increases in temperature, 
pH or denaturant concentration, or mutation or binding 
of  chaperones, can induce a change in mechanism 
[13,14,15",16,17"]. 

T h e  implications of  these observations are several. The  
exchange mechanism cannot be assumed, it should 
be determined explicitly, under the most destabilising 
experimental conditions. Measurements of the apparent 
free energy of exchange, A G  app, are only meaningful in 
EX2 conditions. Because exchange may occur by global 
unfolding, for which kcl may be relatively small, or by 
native state fluctuations, which are presumably more rapid, 
both EX1 and EX2 kinetics may be observed in the same 
protein, as for barnase [14,15°]. T he  use of mutants to 
distinguish global and native-state exchange is important 
in making this distinction. T h e  situation may become 
more complex as the protein is destabilised and global 
exchange becomes dominant [15°,18-20]. At some point, 
protons may be exchanging through both native state  

fluctuations, by an EX2 mechanism, and through global 
unfolding in an EX1 regime [21]. To allow for this, it 
has been proposed that a general two-process model be 
adopted to analyse the kinetics of HX [16,22"]. 

Data  obtained in both EX2 and EXI conditions have been 
combined to determine the kinetic parameters ~'op and 
kcl for the opening reaction of the globally exchanging 
residues in the small protein turkey ovomucoid third 
domain (OMTKY3) [23"]. ~'op can be determined with 
some accuracy; but the determination of kcl depends on 
the correct estimation of kint. Values of kop equal to the 
unfolding rate constant were obtained, supporting a global 
unfolding model. T he  relatively wide range of  values of 

a t-zapp kcl obtained correlate with ~'--ex - The  heterogeneity in 
kcl may reflect some early refolding events or may simply 
reflect the uncertainty in kin t (used to determine both kci 
and app A G e x  ). It would be interesting to see this extended 
to study the rate constants for local fluctuations. However, 
as the pH is raised sufficiently for EX1 conditions to 
apply to rapid native-state fluctuations, the protein may 
become destabilised, in which case, native-state exchange 
will give way to global exchange. It is possible, however, 
to put a lower limit on the rate of native-state fluctuations 

by comparison with estimated values of ~'int under EX2 
conditions• 

Hydrogen exchange and mutations 
Gross changes in protein stability on mutation are easy to 
assess by standard methods. Since HX is a sensitive, site- 
specific probe of local stability, a comparison of HX in wild 
type and mutants can distinguish local and global effects 
of mutation [24-30]. Apart from the mutated residues and 
their immediate neighbours, it can be assumed, providing 
there is no gross structural change, that kin t will be the 
same for all residues in the wild type and the mutant, and 
so the change in the free energy of exchange, kkGex , can 
be determined thus: 

/(WE 
&AGex = - R T I n  '-ex km.t (6) 

where keU.~ and k mat • -ex are the exchange rates of  wild-type 
and mutant, respectively. The  value for ~ G e x  of globally 
exchanging residues gives an accurate measurement of the 
global effect of mutation. Mutation has little or no effect 
on the rates of native-state exchange. Local stabilising and 
destabilising effects can be inferred from changes in local 
exchange behaviour. It is possible to detect remote effects 
that may not be inferred from structural data [26]. In a 
similar wa> the local and global effects of a change in 
oxidation state [31-33], or of ligand binding (see below) 
can be investigated. 

Mutation has proved a valuable tool for distinguishing 
global and native-state exchange [14,25,34,35]. Many 

• ~app  
residues exchange with a significant O, O e x ,  yet have 
identical exchange rates in wild type and mutants with 
a wide range of stabilities. These  residues arc clearly 
exchanging by fluctuations of the native state that do not 
lead to global unfolding. 

Hydrogen exchange and determination of 
global stability 
Under EX2 conditions, there is often a subset of amide 
protons that exchange on a very slow timescale of months 
or even years. According to the two-process model [3,4] 
these protons only exchange when the protein fully 
unfolds. The  open state is fully unstructured so the values 
of kin t from model peptides are a good measure of the 
rate of chemical exchange [5,6]. HX measurement can 
therefore provide information about the global transition 
under native conditions in which the unfolded state is 
populated at extremely low levels, and is an excellent way 
of  obtaining thermodynamic parameters for the unfolding 
p roces s - -wi th  the caveat that the effects of gH20 on 
stability need to be explicitly determined (see [36-38] 
and references therein). The  problems encountered in 
classic chemical or thermal denaturation experiments are 

a v o i d e d - - t h e  energetics of unfolding must be measured 
in the transition region, because under native conditions 
the population of  the unfolded state is too small to be 
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detected and extrapolated to water, and assumptions about 
the nature of this extrapolation have to be made [39-43]. 
Further, under the extreme conditions used, proteins may 
exhibit some irreversibility or oligomerisation. 

For many proteins, the value of AGex corresponds well 
to the free energy of unfolding, AGu determined using 
spectroscopic probes or calorimetry [12,14,35,44,45,46°]. In 
bovine pancreatic trypsin inhibitor (BPTI) [47], RNase 
A [18,48], yeast iso-l-cytochrome c [33], protein G 
[49,50] and OMTKY3 [12], AGex > AG u. Some have 
invoked a supra-unfolded open state, which lies at a 
higher energy than the unfolded state that is accessed 
in conventional denaturation experiments. Alternatively, 
conventional denaturation experiments may give incorrect 
values of AGu because of the problems listed above 
[35,36,46°,50,51°], or the AGex may be invalid because of a 
shift to the EX1 limit [12]. In summary, HX may provide 
the most accurate measure of the free energy of unfolding 
under physiological conditions. 

Another common observation is a rather wide range of 
values of AGex for the slowest exchanging residues. Studies 
of mutant proteins are invaluable because they have 
allowed us to determine, unequivocally, which protons 
exchange by global unfolding [14,25,34,35]. 

Nonglobal exchange and local stability 
What is the nature of the opening reactions that allow 
HX to occur on faster timescales than global unfolding? 
To what extent is HX a measure of stability at these 
sites? As well as a lower free energy of exchange, these 
opening reactions are characterised by having a low 
activation enthalpy [52,53]. Two structural models have 
been proposed. In the local unfolding model, exchange 
takes place through small conformational fluctuations, 
ranging from the breakage of a single hydrogen bond 
to the unfolding of segments of structure [54,55]. kop 
and kcl represent local, cooperative opening and closing 
fluctuations, and Kop reflects local stability. Significantly, it 
is assumed that the open state will always be completely 
unstructured, so that values of kin t from peptide studies 
can be used [5,6]. An alternative mechanism involves 
the penetration of water molecules and catalyst ions via 
small amplitude, noncooperative motions, resulting in the 
formation of channels to the protein interior [4]. In this 
case, kin t is not the same as the exchange rate from 
peptide studies. Both models invoke small movements 
of the protein structure, and therefore must reflect some 
features of local stability because they require the breaking 
and making of interactions within the protein. The local 
unfolding model views the chemical exchange reaction as 
occurring in bulk solvent whereas in the penetration model 
it occurs inside the protein (for a recent review of evidence 
for the two models, see [56]). 

Do the observed exchange rates point to a penetration 
model rather than a local unfolding model? An ot helix 

should provide a good test because it is a single segment 
of structure. There are two common observations. The 
first is a periodicity of AG app [13,14,35,57,58], with sites 
on a solvent-exposed face exhibiting a smaller AGaePx p than 
those that face the interior of the protein. The second is 
decreasing protection from the centre to the ends [33,59]. 
This has been pointed to as evidence for the penetration 
model, because according to the local unfolding model, 
adjacent protons in the same region of substructure would 
be expected to undergo the same local unfolding event 
and therefore should exhibit the same AG app [58]. A more 
realistic physical model is that a unit of structure such as 
an ct helix does undergo cooperative fluctuations; however, 
a variation in AG appex would be expected because the 
fluctuations may not expose all the sites equally to solvent 
[60°]. Thus, the values of  kin t may not be the same as those 
in an unstructured peptide, and the variation in AGaePx p may 
simply reflect the variation in true values of kin t. In this 
case, the different degrees of protection along an a helix 
does not reflect different, nonconcerted unfolding events, 
but rather differences in solvent accessibility. It is clear 
also that stability can be conferred on a site not just by 
hydrogen bonding, but also by packing (burial) [58,61]. 
Central residues in an ct helix often pack against, and 
are buried by, other core residues. Nevertheless, native 
state HX rates do, qualitatively, reflect local stability, as 
is clear from the local effects of mutation [24-26,29] and 
from comparative studies of similar structural elements in 
the same protein [59]. It seems to us that native-state 
exchange is best described by an ensemble of fluctuations, 
involving both cooperative local unfolding and penetration 
of solvent [561. 

Theoretical studies based on the local unfolding model 
predict protection factors that agree well with those 
observed in a number of proteins [62,63]. It would be 
interesting to see these studies extended to barnase 
and chymotrypsin inhibitor 2 (CI2) for which there are 
extensive site-specific data from HX, folding, structural 
and peptide studies. 

Equilibrium studies and protein folding 
pathways 
HX allows us to observe states that are populated at 
very low concentrations at equilibrium that cannot be 
observed directly by standard methods. Partly structured, 
stable folding intermediates should fall into this category. 
In barnase, there is a folding intermediate, I, that has 
a stability o f - 3  kcal mo1-1 relative to the unfolded state 
[64,65]. We expected, by the comparison of mutants with 
different stabilities of I, to be able to distinguish protons 
that exchanged from the intermediate [34]: we were 
unable to do so [14]. Protons either exchanged from the 
native state or from the globally unfolded state. No protons 
had exchange kinetics that could be simply correlated 
with the stability of I. The presence of I, however, 
can be inferred from the observed changes in exchange 
mechanism on mutation or on increasing the temperature 
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(Figure 1; P Dalby, J Clarke, AR Fersht, unpublished 
data). 

Figure 1 
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Effect of temperature on the exchange mechanism in bamase. For 
the globally exchanging residues, which are protected in both the 
intermediate {I) and the native state (N), there is a relatively abrupt 
switch from EX2 to EXl kinetics as the temperature is raised from 
33 to 37"C at p2H 7.8 [14]. At both temperatures, the rate constant 
for folding, kl_ N < kin t. (a) At lower temperatures, the effective 
reprotection step is the conversion of the fully unfolded state (U) to 
I, which is very rapid. (b) As the free energy of I becomes higher 
than U at higher temperatures, there is, in effect, a change in the 
closing step to the complete refolding reaction, U to N. This leads 
to an abrupt change in the closing rate constant and a switch to 
EXl kinetics. In destabilised mutants, this switch occurs at lower 
temperatures, but in stabilised mutants, EX2 kinetics are maintained 
at 37"C. 

Englander and co-workers [19,66"] carried out similar 
experiments on cytochrome c, using guanidinium chloride 
(GdmCl) to destabilise the protein rather than mutation. 
It had previously been reasoned that partially unfolded 
structures might be destabilised to different extents by 
denaturant [18]. Partially unfolded forms were identified 
with subglobal values of AGae pp and m, the dependence 
of AG app ex on denaturant. These could be ranked in 
order of apparent free energies. Similar results were 
obtained with RNase H [44]. It is suggested that because 
these structures resemble kinetic folding intermediates 
identified by HX pulse labelling and molten globule states 
occupied under extreme conditions, they may represent 
sequential folding in termedia tes- - thus  a folding pathway 
might be elucidated by HX at equilibrium [19,44,66°]. 
It is very important to note, however, that equilibrium 
measurements alone cannot be used to infer kinetic 
pathways [15*,60°]. 

The  effect of GdmCl on the exchange behaviour of 
RNase A [16,18], barnase [15"], CI2 [51"] and protein 
L [46"J have a/so been examined. In RNase A, barnase 
and protein L, an increase in GdmCl concentration results 

in a change to EX1 kinetics for the globally exchanging 
protons. In protein L, the pH was manipulated to maintain 
EX2 over the whole denaturant range [46°]. In neither 
CI2 nor protein L ate partially unfolded states observed. 
Data from other proteins have also been interpreted in 
terms of a mixture of global and native-state exchange 
only [20,67,68]. In both bamase and C12, where mutants 
allow native-state exchange to be assigned with certainty, 
a number of nonglobally exchanging residues have a 
significant m value, yet these arc not associated with 
productive unfolding fluctuations. It is possible that a 
mixture of EX1 and EX2 kinetics, in conditions where 
a mixture of global and native-state exchange occurs, 
could result in misinterpretation of AG~ {p and m values 
measured by GdmC1 dependence of exchange [15",22"]. 
These investigations demonstrate that care has to be taken 
with these experiments; however, if folding intermediates 
with significant kinetic barriers between them do exist 
at equilibrium, then one might expect to see the results 
observed with cytochtome c and RNase H. It will be 
interesting to follow this story. 

In barnase and C12 we observe no relationship be- 
tween the established folding pathways [69,70] and 
exchange behaviour at equilibrium [34,51e,60"], whereas 
such a relationship has been observed for other pro- 
teins [19,25,44,66",71,72]. This may reflect, in part, 
the experimental techniques used to measure folding. 
Kinetic studies, using techniques such as stopped-flow 
circular dichroism and protein engineering, can detect the 
formation of secondary structure that is not detected by 
HX. This emphasises the importance of using a number 
of probes to measure folding pathways [73]. 

Protein-protein interactions 
The residue-specific resolution of HX has been used with 
great effect in recent years to look at protein-protein 
and protein-ligand interactions, and has revealed that 
binding can affect the stability and dynamics of a 
protein at sites that are very distant from the site of 
interaction [49,7~-81]. An alternative to monitoring by 
NMR is electrospray mass spectrometry [7,82], which 
has the unique ability to resolve the relative populations 
of differently labelled states. Three detailed studies of 
protein--chaperonin interactions are highlighted below. 

The conformational state of dihydrofolate reductase 
(DHFR) that binds to GroEL was probed by mass 
spectrometry at different stages of its ATP-driven folding 
reaction [83"]. D H F R  is bound in a partly folded state. 
After a round of ATP hydrolysis, D H F R  rebinds to GtoEL 
in a state with a very similar HX-labelling pattern. The  
proposed model is that DHFR folds gradually on GroEL, 
and at each stage of the ATP cycle the chaperone allows 
minor adjustments of the D H F R  structure to be made to 
allow it to complete folding properly. NMR was also used 
to provide more detail about the D H F R - G r o E L  complex 
[841, and showed that protection was greatest for residues 
in the central lB-sheet of the native protein. 



116 Folding and binding 

13-1actamase binds to GroEL only at an elevated tempera- 
ture: this slows the rate of exchange, affording it protection 
similar to that observed for the protein in the absence 
of chaperone at lower temperature [85]. These  results 
indicate that the state that is bound is highly protected. 
The  authors suggest that elevated temperature enhances 
the 'breathing'  motions of the protein that expose surfaces 
that bind to the chaperone. 

The  resolution of N M R  is highlighted in a study of 
barnase and the chaperones GroEk  and SecB [17*,86]. 
Two important observations were made, Firstly, chaperone 
binding accelerates the exchange only of those residues 
that exchange by global unfolding of the native protein. 
Secondly; a shift from EX2 to EX1 was obsen, ed at 
the globally exchanging sites. When combined with 
kinetic folding data that show that the highest affinity 
state is the protected folding intermediate, the results 
suggest that GroEL and SecB correct misfolding by using 
protein-protein binding energy to denature a bound, partly 
folded or misfolded polypeptide to its fully unfolded state, 
thus allowing it to refold properly. HX analysis of the 
cyclophi l in-GroEL complex also revealed that GroEL can 
catalyse global unfolding of the bound substrate [87]. 

Conclusions 
Although it is becoming clear that HX can be a reliable 
method for determining the global stability of a protein, 
and this may be invaluable for systems that are nor 
amenable to the standard methods of  chemical or thermal 
denaturation, the nature of the structural fluctuations other 
than global unfolding that lead to exchange is still very 
much unresolved. The  exchange mechanism need not be 
assumed, but can now be determined at a residue-specific 
level. Moreover, the range of papers published in the 
past two years on much larger, more complex systems 
demonstrates the capacity for HX to investigate questions 
of dynamic stability. It is probable that the use of 
other techniques, notably mutagenesis, alongside HX will 
allow us to fully understand and exploit the technique. 
Technical advances, including the introduction of mass 
spectrometry and relaxation methods that can measure 
very rapid exchange, will allow us to realise the potential 
of HX measurement as conceptualised 40 Tears ago by 
Linderstrom-Lang. 

Note added in proof 
The  unpublished work by P Dalb~, J Clarke and AR 
Fersht mentioned in the text is now in press [88]. 
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